Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 14(16): 10874-10883, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38577422

RESUMEN

Antibacterial hydrogels have gained considerable attention for soft tissue repair, particularly in preventing infections associated with wound healing. However, developing an antibacterial hydrogel that simultaneously possesses excellent cell affinity and controlled release of metal ions remains challenging. This study introduces an antibacterial hydrogel based on alginate modified with bisphosphonate, forming a coordination complex with magnesium ions. The hydrogel, through an interpenetrating network with silk fibroin, effectively controls the release of magnesium ions and enhances strain resistance. The Alg-Mg/SF hydrogel not only demonstrates outstanding biocompatibility and broad-spectrum antibacterial properties but also stimulates macrophages to secrete anti-inflammatory factors. This advanced Alg-Mg/SF hydrogel provides a convenient therapeutic approach for chronic wound management, showcasing its potential applications in wound healing and other relevant biomedical fields.

2.
iScience ; 25(10): 105050, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36185374

RESUMEN

The hostile microenvironment of the retina in patients with age-related macular degeneration (AMD) may trigger epithelial-to-mesenchymal transition (EMT) of grafted retinal pigment epithelial (RPE) cells, thus attenuating the therapeutic outcome. Here, we transformed human dedifferentiated induced pluripotent stem cell-derived RPE (iPSC-RPE) cells into induced RPE (iRPE) cells using a cocktail of four transcription factors (TFs)-CRX, MITF-A, NR2E1, and C-MYC. These critical TFs maintained the epithelial property of iRPE cells by regulating the expression of bmp7, forkhead box f2, lin7a, and pard6b, and conferred resistance to TGF-ß-induced EMT in iRPE cells by targeting ppm1a. The iRPE cells with Tet-on system-regulated c-myc expression exhibited EMT resistance and better therapeutic function compared with iPSC-RPE cells in rat AMD model. Our study demonstrates that endowing RPE cells with anti-EMT property avoids the risk of EMT after cells are grafted into the subretinal space, and it may provide a suitable candidate for AMD treatment.

3.
Exp Eye Res ; 223: 109207, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35926646

RESUMEN

Age-related macular degeneration (AMD) is one of the most common leading causes of irreversible blindness, and there is no effective treatment for it. It has been reported that aging is the greatest risk factor for AMD, and epithelial-mesenchymal transition (EMT) of retinal pigment epithelium (RPE) cells plays an important role in the pathogenesis of AMD. To clarify the relationship between senescence and EMT in RPE cells, we used the replicative senescence model, H2O2- and/or Nutlin3a-induced senescence model, and low-density and/or TGF-ß-induced EMT model to detect the expression of senescence-, RPE- and EMT-related genes, and assessed the motility of cells by using a scratch wound migration assay. The results showed that replicative senescence of RPE cells was accompanied by increased expression of EMT markers. However, senescent RPE cells themselves did not undergo EMT, as the H2O2and Nutlin3a treated cells showed no increase in EMT characteristics, including unchanged or decreased expression of EMT markers and decreased motility. Furthermore, conditioned medium (CM) from senescent cells induced EMT in presenescent RPE cells, and EMT accelerated the process of senescence. Importantly, dasatinib plus quercetin, which selectively eliminates senescent cells, inhibited low-density-induced EMT in RPE cells. These findings provide a better understanding of the interconnection between senescence and EMT in RPE cells. Removal of senescent cells by certain methods such as senolytics, might be a promising potential approach to prevent or delay the progression of RPE-EMT-related retinal diseases such as AMD.


Asunto(s)
Transición Epitelial-Mesenquimal , Degeneración Macular , Senescencia Celular , Medios de Cultivo Condicionados/farmacología , Dasatinib/farmacología , Células Epiteliales/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Degeneración Macular/metabolismo , Quercetina/farmacología , Epitelio Pigmentado de la Retina/metabolismo , Pigmentos Retinianos/metabolismo , Pigmentos Retinianos/farmacología , Factor de Crecimiento Transformador beta/metabolismo
4.
Front Immunol ; 12: 774601, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34880869

RESUMEN

Allergic conjunctivitis (AC) is the most prevalent form of mucosal allergy, and the conditioned medium (CM) from mesenchymal stem cells has been reported to attenuate some allergic diseases. However, the therapeutic effects of CM from different tissue stem cells (TSC-CM) on allergic diseases have not been tested. Here, we studied the effects of topical administration of different human TSC-CM on experimental AC (EAC) mice. Only human amniotic epithelial cell-CM (AECM) significantly attenuated allergic eye symptoms and reduced the infiltration of immune cells and the levels of local inflammatory factors in the conjunctiva compared to EAC mice. In addition, AECM treatment decreased immunoglobulin E (IgE) release, histamine production, and the hyperpermeability of conjunctival vessels. Protein chip assays revealed that the levels of anti-inflammatory factors, interleukin-1 receptor antagonist (IL-1ra) and IL-10, were higher in AECM compared to other TSC-CM. Furthermore, the anti-allergic effects of AECM on EAC mice were abrogated when neutralized with IL-1ra or IL-10 antibody, and the similar phenomenon was for the activation and function of B cells and mast cells. Together, the present study demonstrated that AECM alleviates EAC symptoms by multiple anti-allergic mechanisms mainly via IL-1ra and IL-10. Such topical AECM therapy may represent a novel and feasible strategy for treating AC.


Asunto(s)
Amnios/citología , Conjuntivitis Alérgica/etiología , Conjuntivitis Alérgica/metabolismo , Medios de Cultivo Condicionados/farmacología , Células Epiteliales/metabolismo , Interleucina-10/metabolismo , Interleucina-1alfa/metabolismo , Adipogénesis , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Permeabilidad Capilar , Células Cultivadas , Conjuntivitis Alérgica/diagnóstico , Citocinas/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Femenino , Humanos , Inmunohistoquímica , Ratones , Osteogénesis , Embarazo
5.
Membranes (Basel) ; 11(7)2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34357163

RESUMEN

Membrane distillation (MD) can be used in drinking water treatment, such as seawater desalination, ultra-pure water production, chemical substances concentration, removal or recovery of volatile solutes in an aqueous solution, concentration of fruit juice or liquid food, and wastewater treatment. However, there is still much work to do to determine appropriate industrial implementation. MD processes refer to thermally driven transport of vapor through non-wetted porous hydrophobic membranes, which use the vapor pressure difference between the two sides of the membrane pores as the driving force. Recently, computational fluid dynamics (CFD) simulation has been widely used in MD process analysis, such as MD mechanism and characteristics analysis, membrane module development, preparing novel membranes, etc. A series of related research results have been achieved, including the solutions of temperature/concentration polarization and permeate flux enhancement. In this article, the research of CFD applications in MD progress is reviewed, including the applications of CFD in the mechanism and characteristics analysis of different MD structures, in the design and optimization of membrane modules, and in the preparation and characteristics analysis of novel membranes. The physical phenomena and geometric structures have been greatly simplified in most CFD simulations of MD processes, so there still is much work to do in this field in the future. A great deal of attention has been paid to the hydrodynamics and heat transfer in the channels of MD modules, as well as the optimization of these modules. However, the study of momentum transfer, heat, and mass transfer mechanisms in membrane pores is rarely involved. These projects should be combined with mass transfer, heat transfer and momentum transfer for more comprehensive and in-depth research. In most CFD simulations of MD processes, some physical phenomena, such as surface diffusion, which occur on the membrane surface and have an important guiding significance for the preparation of novel membranes to be further studied, are also ignored. As a result, although CFD simulation has been widely used in MD process modeling already, there are still some problems remaining, which should be studied in the future. It can be predicted that more complex mechanisms, such as permeable wall conditions, fouling dynamics, and multiple ionic component diffusion, will be included in the CFD modeling of MD processes. Furthermore, users' developed routines for MD processes will also be incorporated into the existing commercial or open source CFD software packages.

6.
Invest Ophthalmol Vis Sci ; 62(4): 21, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33861322

RESUMEN

Purpose: Epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells is a key pathological event in proliferative retinal diseases such as proliferative vitreoretinopathy (PVR). This study aimed to explore a new method to reverse EMT in RPE cells to develop an improved therapy for proliferative retinal diseases. Methods: In vitro, human embryonic stem cell-derived RPE cells were passaged and cultured at low density for an extended period of time to establish an EMT model. At different stages of EMT after treatment with known molecules or combinations of molecules, the morphology was examined, transepithelial electrical resistance (TER) was measured, and expression of RPE- and EMT-related genes were examined with RT-PCR, Western blotting, and immunofluorescence. In vivo, a rat model of EMT in RPE cells was established via subretinal injection of dispase. Retinal function was examined by electroretinography (ERG), and retinal morphology was examined. Results: EMT of RPE cells was effectively induced by prolonged low-density culture. After EMT occurred, only the combination of the Rho-associated coiled-coil containing protein kinase (ROCK) inhibitor Y27632 and the TGF-ß receptor inhibitor RepSox (RY treatment) effectively suppressed and reversed the EMT process, even in cells in an intermediate state of EMT. In dispase-treated Sprague-Dawley rats, RY treatment maintained the morphology of RPE cells and the retina and preserved retinal function. Conclusions: RY treatment might promote mesenchymal-epithelial transition (MET), the inverse process of EMT, to maintain the epithelial-like morphology and function of RPE cells. This combined RY therapy could be a new strategy for treating proliferative retinal diseases, especially those involving EMT of RPE cells.


Asunto(s)
Amidas/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Pirazoles/farmacología , Piridinas/farmacología , Epitelio Pigmentado de la Retina/patología , Factor de Crecimiento Transformador beta1/antagonistas & inhibidores , Vitreorretinopatía Proliferativa/tratamiento farmacológico , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Humanos , Ratones , Ratas , Ratas Sprague-Dawley , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/metabolismo , Vitreorretinopatía Proliferativa/metabolismo , Vitreorretinopatía Proliferativa/patología
7.
Exp Eye Res ; 177: 160-172, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30096326

RESUMEN

The pathological change of retinal pigment epithelial (RPE) cells is one of the main reasons for the development of age-related macular degeneration (AMD). Thus, cultured RPE cells are a proper cell model for studying the etiology of AMD in vitro. However, such cultured RPE cells easily undergo epithelial-mesenchymal transition (EMT) that results in changes of cellular morphology and functions of the cells. To restore and maintain the mesenchymal-epithelial transition (MET) of the cultured RPE cells, we cultivated dedifferentiated porcine RPE (pRPE) cells and compared their behaviors in four conditions: 1) in cell culture dishes with DMEM/F12 containing FBS (CC dish-FBS), 2) in petri dishes with DMEM/F12 containing FBS (Petri dish-FBS), 3) in cell culture dishes with DMEM/F12 containing N2 and B27 supplements (CC dish-N2B27), and 4) in petri dishes with DMEM/F12 containing N2 and B27 (Petri dish-N2B27). In addition to observing the cell morphology and behavior, RPE specific markers, as well as EMT-related genes and proteins, were examined by immunostaining, quantitative real-time PCR and Western blotting. The results showed that dedifferentiated pRPE cells maintained EMT in CC dish-FBS, Petri dish-FBS and CC dish-N2B27 groups, whereas MET was induced when the dedifferentiated pRPE cells were cultured in Petri dish-N2B27. Such induced pRPE cells showed polygonal morphology with increased expression of RPE-specific markers and decreased EMT-associated markers. Similar results were observed in induced pluripotent stem cell-derived RPE cells. Furthermore, during the re-differentiation of those dedifferentiated pRPE cells, Petri dish-N2B27 reduced the activity of RhoA and induced F-actin rearrangement, which promoted the nuclear exclusion of transcriptional co-activator with PDZ-binding motif (TAZ) and TAZ target molecule zinc finger E-box binding protein (ZEB1), both of which are EMT inducing factors. This study provides a simple and reliable method to reverse dedifferentiated phenotype of pRPE cells into epithelialized phenotype, which is more appropriate for studying AMD in vitro, and suggests that MET of other cell types might be induced by a similar approach.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Transición Epitelial-Mesenquimal/fisiología , Epitelio Pigmentado de la Retina/citología , Animales , Biomarcadores/metabolismo , Western Blotting , Desdiferenciación Celular/fisiología , Células Cultivadas , Células Epiteliales/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Reacción en Cadena de la Polimerasa , Epitelio Pigmentado de la Retina/metabolismo , Porcinos
8.
Water Res ; 143: 503-517, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-29990745

RESUMEN

A comprehensive review was carried out on the influence of mixing on anaerobic digestion (AD) efficiency in stirred tank anaerobic digesters. Though traditionally, stirred tank digesters operated as continuous stirred tank reactors (CSTRs), this review revealed that there is no motivation to continue to operate stirred tank anaerobic digesters as CSTRs if AD energy efficiency is to be improved. AD energy production efficiency can be achieved with optimized intermittent mixing. AD efficiency should include an assessment of the net energy production efficiency and should be the criteria in determining the mixing mode, mixing intensity, mixing time and mixing interval for every anaerobic digestion operating plan.


Asunto(s)
Eliminación de Residuos Líquidos/instrumentación , Eliminación de Residuos Líquidos/métodos , Anaerobiosis , Biocombustibles , Reactores Biológicos , Metano/metabolismo , Consorcios Microbianos
9.
J Therm Biol ; 59: 34-8, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27264885

RESUMEN

A mechanistic model that predicts sensible and latent heat fluxes from the udder of a dairy cow was developed. The prediction of the model was spot validated against measured data from the literature, and the result agreed within 7% of the measured value for the same ambient temperature. A dairy cow can lose a significant amount of heat (388W/m(2)) from the udder. This suggests that the udder could be considered as a heat sink. The temperature profile through the udder tissue (core to skin) approached the core temperature for an air temperature ≥37°C whereas the profile decreased linearly from the core to skin surface for an air temperature less than 37°C. Sensible heat loss was dominant when ambient air temperature was less than 37.5°C but latent heat loss was greater than sensible heat loss when air temperature was ≥37.5°C. The udder could lose a total (sensible + latent) heat flux of 338W/m(2) at an ambient temperature of 35°C and blood-flow rate of 3.2×10(-3)m(3)/(sm(3) tissue). The results of this study suggests that, in time of heat stress, a dairy cow could be cooled by cooling the udder only (e.g., using an evaporative cooling jacket).


Asunto(s)
Regulación de la Temperatura Corporal , Bovinos/fisiología , Glándulas Mamarias Animales/fisiología , Animales , Temperatura Corporal , Simulación por Computador , Femenino , Trastornos de Estrés por Calor/veterinaria , Glándulas Mamarias Animales/irrigación sanguínea , Modelos Biológicos , Temperatura
10.
J Therm Biol ; 56: 91-9, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26857982

RESUMEN

Conductive cooling, which is based on direct contact between a cow lying down and a cooled surface (water mattress, or any other heat exchanger embedded under the bedding), allows heat transfer from the cow to the cooled surface, and thus alleviate heat stress of the cow. Conductive cooling is a novel technology that has the potential to reduce the consumption of energy and water in cooling dairy cows compared to some current practices. A three-dimensional conduction model that simulates cooling thermally-stressed dairy cows was developed. The model used a computational fluid dynamics (CFD) method to characterize the air-flow field surrounding the animal model. The flow field was obtained by solving the continuity and the momentum equations. The heat exchange between the animal and the cooled water mattress as well as between the animal and ambient air was determined by solving the energy equation. The relative humidity was characterized using the species transport equation. The conduction 3-D model was validated against experimental temperature data and the agreement was very good (average error is 4.4% and the range is 1.9-8.3%) for a mesh size of 1117202. Sensitivity analyses were conducted between heat losses (sensible and latent) with respect to air temperature, relative humidity, air velocity, and level of wetness of skin surface to determine which of the parameters affect heat flux more than others. Heat flux was more sensitive to air temperature and level of wetness of the skin surface and less sensitive to relative humidity.


Asunto(s)
Regulación de la Temperatura Corporal , Trastornos de Estrés por Calor/prevención & control , Modelos Biológicos , Conductividad Térmica , Animales , Bovinos , Trastornos de Estrés por Calor/veterinaria , Humedad , Hidrodinámica , Temperatura
11.
Phys Rev Lett ; 110(17): 176801, 2013 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-23679754

RESUMEN

The quantum Hall effect is observed in a two-dimensional electron gas formed in millimeter-scale hydrogenated graphene, with a mobility less than 10 cm2/V·s and corresponding Ioffe-Regel disorder parameter (k(F)λ)(-1) ≫ 1. In a zero magnetic field and low temperatures, the hydrogenated graphene is insulating with a two-point resistance of the order of 250h/e2. The application of a strong magnetic field generates a negative colossal magnetoresistance, with the two-point resistance saturating within 0.5% of h/2e2 at 45 T. Our observations are consistent with the opening of an impurity-induced gap in the density of states of graphene. The interplay between electron localization by defect scattering and magnetic confinement in two-dimensional atomic crystals is discussed.

12.
Biotechnol Bioeng ; 109(11): 2864-74, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22565280

RESUMEN

An extensive investigation of anaerobic methane fermentation requires identifying the relationship between the physical environment and biological process. In this study, a computational fluid dynamics (CFD) technique was used to characterize bacterial fermentation mechanisms intertwined with mixing and heat transfer in anaerobic digesters. The results demonstrate that the methane yield remains almost unchanged while the energy efficiency decreases with increasing mixing power in a complete-mix digester, and that the energy output increases nonlinearly with the increase in heating energy in a plug-flow digester. The CFD method can be applied to other bioreactors to gain valuable insights into their behavior as well. Integrating flow and temperature with kinetic behavior for anaerobic digestion not only solves the controversy about how mixing influences the digestive process, but also assists in optimizing the digester design and increasing the efficiency of energy conversion, and additionally, provides a reference for improving the mixing guidelines recommended by the U.S. Environmental Protection Agency.


Asunto(s)
Bacterias/metabolismo , Reactores Biológicos/microbiología , Hidrodinámica , Metano/metabolismo , Anaerobiosis , Bacterias/crecimiento & desarrollo , Fermentación , Calor , Cinética , Modelos Estadísticos
13.
Biotechnol Bioeng ; 109(8): 2116-26, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22422446

RESUMEN

A computational fluid dynamics (CFD) model that simulates mechanical mixing for high-solids anaerobic digestion was developed. Numerical simulations of mixing manure slurry which exhibits non-Newtonian pseudo-plastic fluid behavior were performed for six designs: (i) one helical ribbon impeller; (ii) one anchor impeller; (iii) one curtain-type impeller; (iv) three counterflow (CF-2) impellers; (v) two modified high solidity (MHS 3/39°) impellers; and (vi) two pitched blade turbine impellers. The CFD model was validated against measurements for mixing a Herschel-Bulkley fluid by ribbon and anchor impellers. Based on mixing time with respect to mixing energy level, three impeller types (ribbon, CF-2, and MHS 3/39°) stand out when agitating highly viscous fluids, of these mixing with two MHS 3/39° impellers requires the lowest power input to homogenize the manure slurry. A comparison of digestion material demonstrates that the mixing energy varies with manure type and total solids concentration to obtain a given mixing time. Moreover, an in-depth discussion about the CFD strategy, the influences of flow regime and impeller type on mixing characteristics, and the intrinsic relation between mixing and flow field is included.


Asunto(s)
Fermentación , Estiércol/microbiología , Eliminación de Residuos/métodos , Anaerobiosis , Simulación por Computador , Factores de Tiempo
14.
Biotechnol Bioeng ; 109(3): 804-12, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22038563

RESUMEN

A comprehensive study of anaerobic digestion requires an advanced turbulence model technique to accurately predict mixing flow patterns because the digestion process that involves mass transfer between anaerobes and their substrates is primarily dependent on detailed information about the fine structure of turbulence in the digesters. This study presents a large eddy simulation (LES) of mechanical agitation of non-Newtonian fluids in anaerobic digesters, in which the sliding mesh method is used to characterize the impeller rotation. The three subgrid scale (SGS) models investigated are: (i) Smagorinsky-Lilly model, (ii) wall-adapting local eddy-viscosity model, and (iii) kinetic energy transport (KET) model. The simulation results show that the three SGS models produce very similar flow fields. A comparison of the simulated and measured axial velocities indicates that the LES profile shapes are in general agreement with the experimental data but they differ markedly in velocity magnitudes. A check of impeller power and flow numbers demonstrates that all the SGS models give excellent predictions, with the KET model performing the best. Moreover, the performance of six Reynolds-averaged Navier-Stokes turbulence models are assessed and compared with the LES results.


Asunto(s)
Reactores Biológicos , Hidrodinámica , Anaerobiosis , Modelos Teóricos
15.
J Environ Qual ; 40(2): 302-11, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21520736

RESUMEN

Information on liquid distribution after injection of liquid manure is important to the evaluation of injection methods and the design of injection tools. A two-dimensional numerical model was developed to predict liquid distribution in the soil around a soil pocket. Model outputs are the lateral spread (L), vertical thickness (T), and cross-sectional area (A) of the liquid infiltration zone. Values of L do not vary with injection depth, whereas T and A increase with the injection depth. These model outputs are sensitive to effective saturated soil content (the difference between saturated and initial water contents). At greater effective saturated water content, values of L, T, and A are lower. Values of L vary from 0.13 to 0.23 m, values ofT vary from 0.09 to 0.19 m for injection depths from 0.05 to 0.15 m, and values of A vary from 0.009 to 0.030 m2. The model results were compared with field measurements taken from six forage fields with sandy loam and clay soils. The model better predicts L than T and A. The relative average error between the predictions and field measurements vary from 10.3 to 101.9%.


Asunto(s)
Modelos Teóricos , Suelo , Soluciones , Movimientos del Agua , Estiércol , Reproducibilidad de los Resultados , Reología/métodos
16.
Bioresour Technol ; 102(8): 5032-8, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21339067

RESUMEN

A computational fluid dynamics (CFD) model that integrates physical and biological processes for anaerobic lagoons is presented. In the model development, turbulence is represented using a transition k-ω model, heat conduction and solar radiation are included in the thermal model, biological oxygen demand (BOD) reduction is characterized by first-order kinetics, and methane yield rate is expressed as a linear function of temperature. A test of the model applicability is conducted in a covered lagoon digester operated under tropical climate conditions. The commercial CFD software, ANSYS-Fluent, is employed to solve the integrated model. The simulation procedures include solving fluid flow and heat transfer, predicting local resident time based on the converged flow fields, and calculating the BOD reduction and methane production. The simulated results show that monthly methane production varies insignificantly, but the time to achieve a 99% BOD reduction in January is much longer than that in July.


Asunto(s)
Anaerobiosis , Modelos Biológicos , Contaminantes del Agua/metabolismo , Metano/metabolismo , Temperatura , Movimientos del Agua
17.
Water Res ; 45(5): 2082-94, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21216428

RESUMEN

This study evaluates six turbulence models for mechanical agitation of non-Newtonian fluids in a lab-scale anaerobic digestion tank with a pitched blade turbine (PBT) impeller. The models studied are: (1) the standard k-ɛ model, (2) the RNG k-ɛ model, (3) the realizable k-ɛ model, (4) the standard k-ω model, (5) the SST k-ω model, and (6) the Reynolds stress model. Through comparing power and flow numbers for the PBT impeller obtained from computational fluid dynamics (CFD) with those from the lab specifications, the realizable k-ɛ and the standard k-ω models are found to be more appropriate than the other turbulence models. An alternative method to calculate the Reynolds number for the moving zone that characterizes the impeller rotation is proposed to judge the flow regime. To check the effect of the model setup on the predictive accuracy, both discretization scheme and numerical approach are investigated. The model validation is conducted by comparing the simulated velocities with experimental data in a lab-scale digester from literature. Moreover, CFD simulation of mixing in a full-scale digester with two side-entry impellers is performed to optimize the installation.


Asunto(s)
Simulación por Computador , Modelos Químicos , Reología/métodos , Contaminantes del Agua/química , Algoritmos , Anaerobiosis , Hidrodinámica , Cinética , Fenómenos Mecánicos , Reproducibilidad de los Resultados
18.
Environ Sci Technol ; 44(23): 8989-95, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21047058

RESUMEN

In this paper, 12 turbulence models for single-phase non-newtonian fluid flow in a pipe are evaluated by comparing the frictional pressure drops obtained from computational fluid dynamics (CFD) with those from three friction factor correlations. The turbulence models studied are (1) three high-Reynolds-number k-ε models, (2) six low-Reynolds-number k-ε models, (3) two k-ω models, and (4) the Reynolds stress model. The simulation results indicate that the Chang-Hsieh-Chen version of the low-Reynolds-number k-ε model performs better than the other models in predicting the frictional pressure drops while the standard k-ω model has an acceptable accuracy and a low computing cost. In the model applications, CFD simulation of mixing in a full-scale anaerobic digester with pumped circulation is performed to propose an improvement in the effective mixing standards recommended by the U.S. EPA based on the effect of rheology on the flow fields. Characterization of the velocity gradient is conducted to quantify the growth or breakage of an assumed floc size. Placement of two discharge nozzles in the digester is analyzed to show that spacing two nozzles 180° apart with each one discharging at an angle of 45° off the wall is the most efficient. Moreover, the similarity rules of geometry and mixing energy are checked for scaling up the digester.


Asunto(s)
Hidrodinámica , Modelos Biológicos , Contaminantes del Agua/química , Anaerobiosis , Biodegradación Ambiental , Floculación , Fricción , Cinética , Estiércol , Modelos Químicos , Presión , Reología
19.
Water Res ; 44(13): 3861-74, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20627353

RESUMEN

This paper presents an Eulerian multiphase flow model that characterizes gas mixing in anaerobic digesters. In the model development, liquid manure is assumed to be water or a non-Newtonian fluid that is dependent on total solids (TS) concentration. To establish the appropriate models for different TS levels, twelve turbulence models are evaluated by comparing the frictional pressure drops of gas and non-Newtonian fluid two-phase flow in a horizontal pipe obtained from computational fluid dynamics (CFD) with those from a correlation analysis. The commercial CFD software, Fluent12.0, is employed to simulate the multiphase flow in the digesters. The simulation results in a small-sized digester are validated against the experimental data from literature. Comparison of two gas mixing designs in a medium-sized digester demonstrates that mixing intensity is insensitive to the TS in confined gas mixing, whereas there are significant decreases with increases of TS in unconfined gas mixing. Moreover, comparison of three mixing methods indicates that gas mixing is more efficient than mixing by pumped circulation while it is less efficient than mechanical mixing.


Asunto(s)
Reactores Biológicos/microbiología , Simulación por Computador , Gases/química , Reología/instrumentación , Reología/métodos , Anaerobiosis , Fricción , Modelos Químicos , Presión , Reproducibilidad de los Resultados
20.
Water Res ; 44(5): 1507-19, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19913870

RESUMEN

A computational fluid dynamics (CFD) model that characterizes mechanical draft tube mixing in egg-shaped anaerobic digesters was developed. Simulation of flow patterns were carried out with a propeller rotating from 400 to 750rpm, assuming liquid manure to be Newtonian (water) and non-Newtonian fluids depending on the total solids (TS) concentration. Power number and flow number of the propeller in water mixing were validated against lab specifications and experimental data from a field test. The rotational direction and placement of the propeller were examined to identify the primary pumping mode and the optimum position of the propeller fixed inside the tube. Quantitative comparisons of two mixing methods and two digester shapes indicated that mechanical draft tube mixing is more efficient than external pumped recirculation, and that the egg shape provides for more efficient mixing than the cylindrical shape. Furthermore, scale-up rules for mixing in egg-shaped digesters were investigated.


Asunto(s)
Simulación por Computador , Reología/instrumentación , Anaerobiosis , Modelos Químicos , Reproducibilidad de los Resultados , Rotación , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...